Channel Estimation and Pilot Overhead Reduction in OFDM Systems using Compressed Sensing Dynamic Mode Decomposition

Autoren: F. Haddad, C. Bockelmann, A. Dekorsy
Kurzfassung:

This work investigates the potential of employing the approach Compressed Sensing Dynamic Mode Decomposition (CS-DMD) in the context of time-varying wireless channels. To the best of the authors’ knowledge, this marks the first instance of utilizing CS-DMD for pilot-based channel estima- tion in Orthogonal Frequency Division Multiplexing (OFDM) systems. The effectiveness of this method is compared with two advanced deep learning-based channel estimation techniques: Interpolation-ResNet and Learned Approximate Message Passing (LAMP). Furthermore, we leverage the advantageous character- istics of DMD in analyzing complex nonlinear dynamic systems to predict the future state of the channel, thereby reducing the required pilot signals. Simulation results show that utilizing CS- DMD can achieve superior channel estimation performance with less pilot overhead.

Dokumenttyp: Journal Paper
Veröffentlichung: Februar 2024
Journal: IEEE Communications Letters
Dateien:
Channel Estimation and Pilot Overhead Reduction in OFDM Systems using Compressed Sensing Dynamic Mode Decomposition
Channel Estimation and Pilot Overhead Reduction in OFDM Systems using Compressed Sensing Dynamic Mode Decomposition.pdf261 KB
BibTEX
Zuletzt aktualisiert am 16.08.2024 von F. Haddad
AIT ieee GOC tzi ith Fachbereich 1
© Arbeitsbereich Nachrichtentechnik - Universität BremenImpressum / Kontakt