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ABSTRACT

We consider a single user MIMO-OFDM system where spa-

tial multiplexing is applied and formulate rate allocation algo-

rithms to adapt the used modulation alphabet on a per subcar-

rier basis. As a means to consider the system behavior includ-

ing the channel code regarding bit or frame error rate (BER,

FER) versus normalized average mutual information (NAMI)

of an OFDM symbol for severalM -QAM alphabets is inves-
tigated. To this end an approximation to the mutual infor-

mation of MIMO systems with M -QAM signal alphabets is
derived and compared to channel decomposition approaches

to find a complexity/accuracy trade-off. Based on the mutual

information results two algorithms using this channel knowl-

edge are introduced. On the one hand, the error rates can be

optimized assuming a fixed rate requirement and on the other

hand the achieved transmission rate can be optimized under

a BER/FER constraint. In both cases a NAMI threshold de-

rived from the simulated system behavior for a specific chan-

nel code is used to adapt the allocated modulation alphabets

via a greedy algorithm to achieve the target NAMI within an

error margin.

1. INTRODUCTION

Adaptive communications for Orthogonal FrequencyDivision

Multiple (ODFM) systems have been studied extensively, but

mostly limited to the uncoded case, where the uncoded bit er-

ror rate (BER) is an often used target measure (e.g. [1],[2]).

Practical coding typically has been neglected, but recently

Ibi et. al [3] introduced a scheme based on the adaptation

of the bit level channel coding with a fixed modulation size

via Extrinsic Information Transfer (EXIT) charts for a fre-

quency selective system with Minimum Mean Square Error

(MMSE) turbo equalization. Obviously, this approach is lim-

ited by the chosen modulation alphabet, whereas Sankar et. al

[4] and Li et. al [5] introduced algorithms to optimize the sig-

nal alphabets and transmission power over a set of orthogo-

nal Gaussian channels if Low Density Parity Check (LDPC)
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codes are applied. In both cases bit allocations have been op-

timized under the assumption of a fixed channel code. They

showed mutual information (MI) to be a good optimization

criterion for LDPC codes with regard to the error rate after

decoding. Furthermore, results from Brueninghaus et. al [6]

indicate that mutual information is an appropriate measure

of channel quality to predict error rates reasonably well for

convolutional and turbo codes. However, the calculation of

the mutual information with finite symbol alphabets can only

be solved numerically, which necessitates usable approxima-

tions. Especially, if multiple antennas are considered and lin-

ear precoding via an adequate decomposition of the channel

is not applicable, e.g. for a low feedback scenario, numerical

calculation becomes unfeasible (e.g. [7],[8]). Monte Carlo

integration methods are one approach to this problem [9], but

computational effort still remains high. To this end an ap-

proximation of the mutual information based on Jensen’s in-

equality will be introduced in this paper, which allows the

evaluation of the mutual information of Multiple Input Multi-

ple Output (MIMO) channels without the need for numerical

integration. Based on this approximation we propose two ap-

plications. First, a rate allocation scheme to enhance the bit

error rate performance of coded MIMO-OFDM systems with

a rate constraint and secondly a rate maximization scheme to

optimize the number of transmitted bits under the constraint

of a target error rate.

The remainder of the paper is organized as follows. In

Section 2 the complex baseband system model is introduced.

Afterwards an approximation to the mutual information of

MIMO channels with finite symbol alphabets will be intro-

duced in Section 3 and in Section 4 the Sorted QR Decompo-

sition (SQRD) will be shown to simplify the calculations of

this approximation. Then, in Section 4.3 an approach to al-

locate modulation alphabets to subcarriers of an OFDM sym-

bol via the discussed mutual information approximation will

be discussed. Two cases will be distinguished, rate allocation

with a fixed BER/FER constraint and BER/FER enhancement

with a fixed rate. In Section 6 simulation results will be pre-

sented and, finally, Section 7 will summarize the results.



Notation

In the following, vectors and matrices are denoted by lower

case and capital bold faced letters, respectively. We use (·)T

for the matrix transpose and (·)H for conjugate transpose.

The identity matrix of dimension n is denoted by In. Ey{·}
denotes the expectation with respect to random variable y and

NC(µ,Φ) describes a complex Gauss distribution with mean
vector µ and covariance matrixΦ.

2. SYSTEMMODEL

The equivalent baseband system model of a MIMO-OFDM

system with NT transmit andNR receive antennas in the fre-

quency domain for subcarrier k = 1, · · · , NC is given by

yk = Hkxk + nk, (1)

where yk ∈ CNR×1 , xk ∈ CNT ×1 and Hk ∈ CNR×NT

denote the receive vector, transmit vector and channel matrix,

respectively. Furthermore, the noise vector nk ∈ CNR×1 is

complex Gaussian with nk ∼ NC

(
0, σ2

nINR

)
.

The transmit vector xk is constructed as a function of the

symbol vector dk ∈ ANT ×1, i.e., xk = f(dk), where A
denotes a set of symbols with cardinalityM = |A| (i.e. M -
QAM). In the following we will restrict to the case of Spatial

Multiplexing (SM) with variable alphabetsAk per subcarrier.

Throughout this paper equal power distribution in space and

frequency is assumed, leading to

xk =

√
P
NT

dk , (2)

whereP denotes the transmit power per subcarrier. The chan-
nel matrix in frequency domain Hk results from the NC -

point DFT of the frequency selective time domain channel

H(ℓ) ∈ CNR×NT with LF taps. The elements of H(ℓ) are
i.i.d. complex Gaussian distributed with σ2

h = 1.
The channel is assumed to be constant over one OFDM

symbol, but changing independently between OFDM sym-

bols. Exemplarily, two channel codes will be analyzed in this

paper. On the one hand the [7, 5]oct convolutional code (CC)
and on the other hand the punctured half rate 3GPP Turbo

Code (TC) [10]. Coding is applied to encode the data over one

OFDM symbol only leading to varying code word lengths. In

case of the turbo code Ntc = 8 decoder iterations will be ap-
plied.

3. MUTUAL INFORMATION

Throughout Section 3 and 4 we will assume a deterministic

MIMO channel (e.g. a realization of Hk). The mutual in-

formation of the communication system (1) disregarding the

subcarrier index k for ease of notation is then well known to
be [11]

h (x;y) = h (y) − h (n) , (3)

where h (y) denotes the entropy of the receive vector y and
h (n) = NR log2

(
π eσ2

n

)
the entropy of the noise. The dif-

ferential entropy h (y) is defined as

h (y) = Ey{− log2(p(y))}

= −
∫

CNR

p(y) log2(p(y)) dy , (4)

where the probability density function p(y) can be expressed
as

p(y) =
∑

x∈X

p(y|x) p(x) . (5)

For each transmit vector x, where X is ANT ×1 scaled with
√

P/NT , the marginal probability depends on the number of

transmit symbols per layer

p(x) =
1

MNT
, (6)

whereas the probability of y conditioned on x under the as-

sumption of white Gaussian noise results in

p(y|x) =
1

(πσ2
n)

NR
e
− ‖y−Hx‖2

σ2
n . (7)

3.1. Jensen’s Inequality

Jensen’s inequality is a well known way to lower bound ex-

pressions like (4) (and generally convex function)[11]

Ey{− log2(p(y))} ≥ − log2(Ey{p(y)}) , (8)

which leads to a much simpler formulation

h (y) ≥ − log2





∫

CNR

p(y) p(y) dy





= − log2





∫

CNR

p(y)
2

dy



 . (9)

Inserting (6) and (7) in (5) leads to (10) considering the sec-

ond line of (9), where the remaining integralΘ can be solved
in closed form. In order to illuminate this, it is useful to

rewrite the arguments of the exponential functions.

‖y − Hx‖2 = |y1 − hT
1 x|2 + · · · + |yNR

− hT
NR

x|2 , (11)

with hT
i being the ith row of the channel matrixH. Grouping

terms stemming from xi and xκ with regard to the elements

of y leads to a product of independent integrals

Θ =

∫

C

e
−

|y1−hT
1

xi|
2−|y1−hT

1
xκ|2

σ2
n dy1 · · ·

∫

C

e
−

|yNR
−hT

NR
xi|

2−|yNR
−hT

NR
xκ|2

σ2
n dyNR

, (12)



h (y) ≥ − log2





∫

CNR

(
∑

x∈X

1

(πσ2
n)NR MNT

e
− ‖y−Hx‖2

σ2
n

)2

dy





= − log2










1

(πσ2
n)

2NR M2NT

∑

xi∈X

∑

xκ∈X

∫

CNR

e
−

‖y−Hxi‖
2

σ2
n e

− ‖y−Hxκ‖2

σ2
n dy

︸ ︷︷ ︸

Θ










, (10)

where each integral can be solved in closed form

∫

C

e
−

|yρ−hρxi|
2−|yρ−hρxκ|2

σ2
n dyρ =

1

2
π e

− 1

2σ2
n
((|hT

ρ xi|
2+|hT

ρ xκ|
2)−(hT

ρ x∗
i h

T
ρ xκ+hT

ρ xih
T
ρ x∗

κ)) ∀ρ

(13)

This finally leads to

Θ =
(π

2

)NR

e
− 1

2σ2
n

(xi−xκ)HHHH(xi−xκ)
. (14)

Using (14) in (10) and the abbreviation ∆x = xi − xκ we

achieve the loose lower bound

h (y) ≥ − log2







∑

∆x∈D

e
− 1

2σ2
n

∆H
x HHH∆x

(2π)NR (σ2
n)2NR M2NT







︸ ︷︷ ︸

h̃(y)

, (15)

where the set of all difference vectors is denoted by

D =
{
∆x |∆x = xi − xκ ∀i, κ = 1, . . . , NM

T

}
. (16)

3.2. Approximation

With (15) a rather loose lower bound h̃ (y) has been formu-
lated, however, the overall behavior is similar to the original

entropy. In the limit of very small and very large transmit

power P (assuming a fixed noise power σ2
n = 1) the differ-

ence to the true entropy is constant as the following analysis

shows

lim
P→∞
σ2

n=1

h̃ (y) = NR log2

(
2πMNT

)
(17)

lim
P→0
σ2

n=1

h̃ (y) = NR log2(2π) . (18)

Where (18) is obvious as all exponential terms in (15) tend

to one for P → 0, whereas (17) results due to the fact that
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Fig. 1. Comparison of h (x;y) and ĥ (x;y) for a random
channel (NR = NT = 2, 4-QAM and 16-QAM)

all exponential terms with i 6= κ tend to zero for P → ∞.
Accordingly, the limits of h (y) can be calculated

lim
P→∞
σ2

n=1

h (y) = NR log2

(
π eMNT

)
(19)

lim
P→0
σ2

n=1

h (y) = NR log2(π e) (20)

Apparently, the difference∆h(y) between h (y) and h̃ (y) for
very low or high SNR is given by

∆h(y) = NR log2

( e

2

)

. (21)

Due to this we propose an approximation ĥ (y) to the entropy
h (y) based on Jensen’s inequality

h (y) ≈ ĥ (y) = h̃ (y) + ∆h(y) . (22)

Fig. 1 shows the proposed approximation and the exact ca-

pacity (via numerical integration) for 4-QAM and 16-QAM.



For comparison, the well known capacity with Gaussian sig-

naling has been plotted. A randomly generated realization of

a channel matrix H (hi,κ ∼ NC(0, 1)) with NR = NT = 2
has been used to achieve the results. The general behavior of

the channel capacity h (x;y) is well approximated by ĥ (y)
with the biggest deviation in the transient part of the curve.

Even though this form is more tractable than h (y), it is still
numerically demanding for high rates and large systems.

4. CHANNEL DECOMPOSITION

In order to ease calculation of the constrained channel capac-

ity, two decomposition approaches will be investigated. Re-

garding a Single Input Single Output (SISO) channel the ca-

pacity can be approximated based on knowledge of the SNR

and some curve fitting [4]. Accordingly, we are interested in

a way to represent the MIMO capacity in terms of subchan-

nel SINRs. This way, either the presented approximation (22)

or other known solutions can be incorporated to estimate the

mutual information.

4.1. Singular Value Decomposition

An often invoked approach considering MIMO systems is the

decomposition of the channel matrixH to

H = USVH , (24)

whereU andV are unitarymatrices andS = diag (λ1, . . . , λr)
denotes the diagonal matrix of singular values λi with r being
the rank of the channel matrix.

Introducing (24) to (1) again neglecting k, we achieve r
equivalent SISO systems

y = USVHx + n and x = V

√

P
NT

d

ỹ = UHy = S

√

P
NT

d + ñ

ỹi = λi

√

P
NT

di + ñi ∀ i = 1, . . . , r . (25)

The SNRi of each layer i can be expressed in terms of the
signal to noise ratio P/

(
NT σ2

n

)
and the singular values λi

SNRi =
Pλ2

i

NT σ2
n

. (26)

Thus, considering Gaussian signaling the capacity can be

formulated as a sum of subchannel capacities depending on

the singular values λi of the channel [11]. With a discrete sig-

nal alphabet, however, this is no longer viable, as the decom-

position of the channel into orthogonal subchannels leads to

a different overall mutual information of the system. Specif-

ically, (4) is transformed into a sum of independent terms re-

sulting in (23).
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Fig. 2. Comparison of the mutual information of SVD and

QR based channel decompositions with the mutual infor-

mation of the system, a) NT = NR = 2, M = 16, b)
NT = NR = 4,M = 4

4.2. QR decomposition

Another well known approach to decompose a channel matrix

is the SQRD, which enables the decomposition in the sense

of the MMSE with sorting of the layers [12]. Introducing the

extended channel matrix H̃ =

[
HΩ

σnINT

]

with the permutation

matrixΩ, the decomposition is defined as

H̃ = Q̃R̃ , (27)

where Q̃ is a matrix with orthogonal columns and R̃ is upper

triangular.

TheSNRi of each layer i can be expressed in terms of the
signal to noise ratio P/

(
NT σ2

n

)
and the diagonal elements of

R

SNRi = |ri,i|2
P

NT σ2
n

− 1 . (28)

An approximate mutual information hSQRD(y) can then be

attained by replacing λi

√

P/NT with
√

SNRi in (23).

4.3. Comparison

Fig. 2 shows a comparison of the channel capacity as defined

by the approximation (22) to the corresponding SISO capac-

ities and their sum in case of SVD and QR decomposition

of the system, i.e. ĥSVD and ĥSQRD. Regarding the QR de-
composition sub-optimal sorting with MMSE filtering is used

[12]. The system parameters for a) are NR = NT = 2
with M = 16. Part b) of Fig. 2 shows results for NR =
NT = 4 and M = 4. The chosen channel realizations are



hSVD(y) =

r∑

i=1

∫

C

1

M22πσ4
n

∑

di∈A

e−|ỹi−λi

√
P/NT di|

2

log2

(

1

M22πσ4
n

∑

di∈A

e−|ỹi−λi

√
P/NT di|

2

)

dỹi (23)
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Fig. 3. a) Bit Error Rate and b)Frame Error Rate versus nor-

malized Mutual Information, NR = NT = 2, NC = 1024
forM -QAM with M = 1, · · · , 8 - max-APP, Convolutional
Code

both ”good” in the sense of nearly equally good singular val-

ues. Largely different singular values are usually unfavorable

for the SVD (without any kind of adaptation), leading to bad

approximations. Even in this ”good” case, where the differ-

ence between the singular values is small, the approximation

is clearly worse than for the SQRD approach. All the more

if the number of antennas grows, as can be seen in b). Note,

that ĥSQRD is depicted with markers only since the results are

equal to ĥ (x;y). Both approaches lead to usable approxima-
tions (for the shown ”good” channels), but the QR approach

- a consequence of the sorting - is clearly superior and even

performs well if the singular values differ greatly. Therefore,

the SQRD approach will be used to ease the calculation of the

mutual information by approximation (22) as a sum of SISO

terms in the remainder of the paper.

5. RATE ALLOCATION

As stated in Section 2 we consider a system, where spatial

multiplexing is applied per subcarrier and the available trans-

mit power is allocated evenly to all subcarriers and antennas.

Under these circumstances the used modulation size on

each subcarrier shall be adapted to the communication chan-

NAMI

F
E
R

b)

NAMI

B
E
R

a)

BPSK

4-QAM

16-QAM

64-QAM

256-QAM

0.6 0.65 0.7 0.75 0.8 0.6 0.65 0.7 0.75 0.8
10−5

10−4

10−3

10−2

10−1

100

10−3

10−2

10−1

100

Fig. 4. a) Bit Error Rate and b) Frame Error Rate versus nor-

malized Mutual Information,NR = NT = 2,NC = 1024 for
M -QAM withM = 1, · · · , 8 - max-APP, Turbo Code

nel assuming perfect channel state information at the trans-

mitter. Note, however, that due to the system assumptions

transmitter knowledge of the chosen modulation on a given

subcarrier is sufficient, which makes this approach feasible

even in feedback constrained scenarios. In order to incor-

porate channel coding into the design of our rate allocation

scheme, we consider the normalized average mutual informa-

tion (NAMI) of an OFDM symbol

NAMI =
1

NC

NC∑

k=1

MI (Hk,Ak)

NT log2(Mk)
, (29)

where MI (Hk,Ak) denotes the approximated mutual infor-
mation of a subcarrier k, which depends on the current chan-
nel condition and the chosen modulation alphabetAk and can

be calculated via the SQRD and (22). The overall system

behavior including channel coding can then be described in

terms of the bit or frame error rate depending on the NAMI.

Fig. 3 and Fig. 4 show the error rates in dependence of

the NAMI, which have been achieved by Monte Carlo simu-

lations (i.e., random channel realizations) with the system pa-

rametersNR = NT = 2,NC = 1024 using the convolutional
code and the turbo code with max-APP detection, respec-

tively. For each channel realization the NAMI has been cal-

culated along the errors after decoding assuming LF = 1024,



leading to an average performance measure. As can be seen

from Fig. 3 the achieved bit and frame error performance ver-

sus the normalized average mutual information is approxi-

mately independent from the chosen modulation size under

the assumption that the same alphabet has been used for all

transmit antennas and subcarriers (this is also true for rectan-

gular QAM alphabets which have been omitted due to space

constraints). OFDM frames with mixed modulation alphabets

on the subcarriers will naturally behave very similar with re-

gard to the NAMI, which motivates the choice of a common

threshold for all alphabet sizes to be estimated as the mean

of the individual NAMI thresholds of the applied modulation

alphabets. This heuristic provides control over the achieved

performance as will be shown in Section 6. Motivated by

this observation we propose the algorithm MaxNAMI, which

chooses the rate of a subcarrier according to its mutual infor-

mation approximated by (22) to achieve a rate constraint. The

choice of a minimum (frame or bit) error rate ERmin provides

an operating point leading to a mutual information threshold

(i.e. NAMI) which has to be achieved at every subcarrier.

MaxNAMI Set the target rate per subcarrier RTarget, the
target error rate ERmin and the maximum bits per antenna

imax. Then determine the minimummutual informationMImin =
f(ERmin) necessary to fulfill the bit error rate requirement
(dependent on the code, for example per Fig. 3).

1. Calculate the mutual information MI(Hk,Ai) for all
subcarriers k = 1, . . . , NC and symbol alphabets Ai

via (3), where i = log2(Mi) < imax.

2. For each subcarrier k choose the largest alphabet Ai

fulfilling MI(Hk,Ai) > MImin and set modulation in-
dex of a subcarrier Sk = i.

3. Calculate R =
∑NC

k=1 Sk and compare to RTarget. Stop,
if the target rate has been achieved, otherwise continue

with (a) or (b).

(a) If R < RTarget set Sk = Sk + 1 at subcarrier k,
where the difference MI(Hk,ASk+1) −MImin is
smallest. Goto 3.

(b) If R > RTarget set Sk = Sk − 1 at subcarrier
k, where the difference MI(Hk,ASk

) −MImin is
smallest. Goto 3.

By this approach, however, the minimum bit error rate is just

used as an indicator for the NAMI threshold. Though, for low

SNR this threshold will in general not be achievable, whereas

for higher SNR the NAMI is maximized under the rate con-

straint by this greedy approach, thereby providing a better

overall error rate performance.

As stated in Section 2 we are not only considering a con-

volutional coded system, but also apply turbo coding. The

overall behavior shown in Fig. 4 is similar to the convolu-

tional code, though the differences between modulations are

more distinctive. Nonetheless, the heuristic NAMI threshold

provides overall good results. In general, the turbo code needs

Eb/N0 in dB
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Fig. 5. Frame Error Rate versus Eb/N0, max-APP detection,

NR = NT = 2, NC = 1024 and LF = 10 for 4 Bit/s/Hz
(solid), 8 Bit/s/Hz (dashed) and 12 Bit/s/Hz (dash dotted) with

BERmin = 10−3 and imax = 8

much less NAMI per OFDM symbol to achieve reasonable

error rates than the convolutional code which is especially at-

tractive for rate optimization under the constraint of a target

error rate. Therefore, we propose the algorithmMinNAMI as

a means to control the NAMI while maximizing the transmis-

sion rate.

MinNAMI Set the target (bit or frame) error rate ERmin and

the maximum bits per antenna imax. Then determine the aver-
age mutual information threshold NAMITh = f(ERmin) nec-
essary to fulfill the bit error rate requirement (dependent on

the code as per Fig. 3 or Fig. 4) and define δmax the maximum
tolerated deviation.

1. Calculate the mutual information MI(Hk,Ai) for all
subcarriers k = 1, . . . , NC and symbol alphabets Ai

via (3), where i = log2(Mi) < imax.

2. For each subcarrier k choose the largest alphabet Ai

fulfilling MI(Hk,Ai) > NAMITh and set Sk = i.

3. Calculate the current NAMI and compare to NAMITh.

Stop, if the target NAMI has been achieved, otherwise

continue with 4.

4. If NAMI−NAMITh > δmax set Sk = Sk + 1 at subcar-
rier k, where the differenceMI(Hk,ASk+1) − NAMITh
is smallest. Goto 3.

Due to step 2 it is guaranteed, that the current NAMI is al-

ways higher or equal to the threshold and due to the fact that

the NAMI change at step 4 is always as small as possible with

the choice of a reasonable δmax the resulting NAMI will al-
ways be higher than the threshold. Because of the hard error
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rate constraint, transmission is not possible for too low trans-

mission powers. Likewise, for high transmission powers the

rate will be limited to the highest modulation size leading to

a decreasing error rate.

6. SIMULATION RESULTS

The following results have been obtained throughMonte Carlo

simulations using a fixed set of system parameters. Note, that

in contrast to the derivations in Section 3 and 4.1 channel ma-

trices are randomly generated for each OFDM symbol.

Regarding MaxNAMI, Fig. 5 shows the frame error rate

using max-APP detection (a posteriori probability) for a sys-

tem with NC = 1024 subcarriers, NR = NT = 2 anten-
nas and LF = 10 channel taps if a rate of 4 Bit/s/Hz, 8
Bit/s/Hz or 12 Bit/s/Hz is transmitted. The results denoted as

“Equal” show the performance of a non adaptive system with

a fixed modulation alphabet for all subcarriers (4-QAM, 16-

QAM and 64-QAM accordingly). The proposed rate alloca-

tion scheme, denoted as “MaxNAMI” offers gains of approx-

imately 1dB for 8 Bit/s/Hz and 12 Bit/s/Hz at FER = 10−2,

where the gain for higher rates increases. This is instantly un-

derstandable as more degrees of freedom exist to allocate rate

to subcarriers. Accordingly, at 4 Bit/s/Hz noticeable gains

occur only below FER = 10−2.

In case of Fig. 6 and Fig. 7 a system with NC = 1024
subcarriers, NR = NT = 2 antennas and LF = 6 channel
taps has been used. Fig. 6 presents the achieved transmission

rate, which is calculated as the sum of all bits of the error free

frames normalized to the number of subcarriers NC and the
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Fig. 7. Bit and Frame Error Rate versus P , max-APP detec-
tion, NR = NT = 2, NC = 1024 and LF = 6 for Algorithm
2 with BERmin = 10−5 (CC), FERmin = 10−2 (TC), imax = 8
and δmax = 0.05; Derived AMITh as noted in the legend

number of error free frames. For comparison to the “Min-

NAMI” algorithm the maximum achievable rate with respect

to a fixed modulation alphabet has been obtained at the given

target error rate. With an error rate of BERmin = 10−5 for the

convolutional code and FERmin = 10−2 for the turbo code

the static transmission scheme achieves nearly the maximum

possible rate (i.e. 4-QAM achieves 2 bit/s/Hz). Accordingly,

the transmission powers for each modulation alphabet have

been used as a reference denoted as “static” in Fig. 6. “Min-

NAMI” achieves gains of approximately 0.5 bit/s/Hz in case

of the convolutional code and up to 1 bit/s/Hz when turbo

coding is applied. While the system with turbo coding nearly

achieves the maximum possible rate - due to the choice of

imax = 8 (256-QAM) - at P = 23dB, the weak convolu-
tional code is roughly 2 bit/s/Hz inferior. Considering the

error rate results in Fig. 7, the target error rates for the turbo

code are well met with the exception of P = 23dB, where the
proposed scheme already achieves the highest possible rate.

For higher transmit powers the error rates will decrease ac-

cordingly as only the highest modulation size will be used

leading to an increased NAMI as already predicted in Section

4.3. The convolutional code, however, shows an increasing

deviation with respect to the chosen threshold, which is espe-

cially evident in the frame error rate. The higher the transmit

rate, the longer the code words become, which leads to an in-

creasing probability of code word errors. In contrast to the

turbo coded system, where longer code words also mean in-

creased interleaver length and therefore a better performance,

a fully loaded system performs worse with respect to a given

NAMI. Furthermore, at low rates the chosen NAMI thresh-

old is too pessimistic (compare Fig. 3) leading to a decreas-



ing error rate. Due to this, the simple heuristic approach of

a common NAMI threshold does not work well for rate op-

timization with an error constraint when convolutional codes

are applied, whereas turbo codes are more robust.

7. CONCLUSION

For the specific scenario of a single user OFDMSystemwhere

spatial multiplexing should be applied and max-APP detec-

tion is used, two mutual information based rate allocation

schemes have been introduced. Our approach makes use of

the inherent connection of capacity and average decoding per-

formance, which still holds for MIMO systems. It has been

shown, that through this approach lower BER/FER are achiev-

able via a simple greedy algorithm which maximizes the nor-

malized average mutual information of an OFDM symbol.

Secondly, rate optimization given a fixed target BER/FER,

which is especially attractive in the presence of ARQ schemes,

has been introduced. Here, the simple heuristic threshold cal-

culation only proved to be useful for turbo coded systems,

whereas the convolutional code leaves much room for en-

hancement.

Furthermore, compared to linear schemes which need per-

fect channel state information at the transmitter based on the

SVD of the subcarrier channel matrices, our approach needs

less feedback. It is sufficient to signal the transmitter which

QAM should be used on a specific subcarrier. The down-

side, however, is a much higher complexity at the receiver

due to the applied max-APP detection. Modern parallel soft

output sphere detection [13][14] offers a feasible implemen-

tation, but less complex detection at marginal performance

losses would be preferable. The application of the SQRD

as a means to calculate the capacity of the system naturally

leads to another option. Successive Interference Cancellation

(SIC) receivers based on the SQRD have been shown to nearly

achieve the performance of APP detection at much less com-

plexity.

Future enhancements to these approaches could include

the application of multiple thresholds, each tailored to the de-

coding performance of specific modulation alphabet and/or

adaptive thresholds depending on the NAMI currently achiev-

able. The latter seems especially useful to achieve a tight error

rate control in case of convolutional codes. Moreover, to over-

come the limitation of a maximum alphabet size additionally

code rate switching could be included into the design, leading

to a mixture of BER/FER vs. NAMI characteristics to choose

from.
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